METODE ALGORITMA GENETIK UNTUK MENENTUKAN BANK KAPASITOR PADA SISTEM TENAGA LISTRIK

Nurhening Yuniarti, Toto Sukisno Fakultas Teknik Universitas Negeri Yogyakarta

ABSTRAK

Penelitian ini bertujuan untuk: (I) Menentukan ukuran dan lokasi pemasangan kapasitor dengan menggunakan metode Algoritma Genetik, (2) Mengetahui profit tegangan pada sistem tenaga listrik setelah terpasang kapasitor yang penentuan ukuran dan lokasi pemasangannya menggunakan metode Algoritma Genetik.

Penelitian ini dilakukan Laboratorium Mesin dan Simulasi Sistem Tenaga Listrik Jurusan Pendidikan Teknik Elektro FT UNY. Penelitian ini terrnasuk dalam jenis penelitian Research & Development untuk menghasilkan listing programming yang mengimplementasikan metode Algoritma Genetik dalam penentuan ukuran dan lokasi pemasangan kapasitor pada sistem tenaga dengan menggunakan bantuan perangkat lunak Matlab versi 6.5.

Hasil penelitian menunjukkan: (1) Penentuan ukuran dan lokasi pemasangan kapasitor dengan menggunakan algoritma genetik (AG) didasarkan atas nilai profil tegangan dan rugi daya reaktif pada masing-masing bus, (2) Profil tegangan pada sistem tenaga listrik setelah dinjeksi kapasitor bank lebih baik dibandingkan sebelum dinjeksi kapasitor bank.

Kata kunci: kapasitor, algoritma genetik, profil tegangan

A. PENDAH-ULUAN

I. Latar Belakang Masalah

Pendistribusian energi listrik dari pusat ke titik-titik beban, mernpunyai kualitas yang baik, handal dan aman. Kualitas yang baik ini ditunjukkan dengan nilai tegangan dan frekuensi yang relatif tetap serta faktor daya yang tinggi, sedangkan handal ditunjukkan oleh kontinuitas atau kesinambungan penyaluran yang tetap terjaga dan yang terakhir aman yakni ditunjukkan melalui kemampuan peralatan pengaman yang mampu bekerja sesuai dengan fungsinya.

Perrnasalahan untuk menjaga tegangan (salah satu parameter kualitas kelistrikan) pada batasan yang ditentukan merupakan salah satu persoalan yang sangat rumit jika ditinjau dari titik beban yang sangat kompleks serta jumlah unit pembangkit yang cukup banyak dengan lokasi yang berbeda secara geografis. Akibat beban yang bervariasi daya

Seminar Nasional Hasil-hasil Penelitian Teknologi, MIPA dan Pendidikan Vokasi c.:»:

184

reaktifjuga memerlukan sistem transmisi yang bervariasi. Di sisi lain, daya reaktif tidak dapat ditransmisikan dalam saluran yang panjang, sehingga kontrol tegangan perlu dilakukan dengan menggunakan alat khusus yang dipasang pada sistem. Pemilihan yang tepat dan koordinasi peralatan untuk mengontrol daya reaktif dan tegangan merupakan tantangan besar pada sistem tenaga.

Kapasitor paralel dan reaktor paralel, serta kapasitor seri menyediakan kompensasi pasif yang biasanya terhubung secara permanen pada saluran transmisi maupun distribusi. Komponen ini mendukung kontrol tegangan dengan memodifikasi karakteristik jaring. Kapasitor merupakan komponen ini menjadi salah satu alternatif dalam perbaikan stabilitas sistem dan regulasi tegangan.

Permasalahannya, dimana kapasitor harus dipasang? Penentuan lokasi pemasangan kapasitor menjadi salah satu faktor yang mempengaruhi perbaikan profil tegangan pada sistem secara optimal. Kompleksitas beban yang semakin meningkat memberikan konsekwensi terhadap kecepatan waktu dalam mengambil keputusan guna menjaga kestabilan dan kontinuitas sistem. Salah satu permasalahan yang membutuhkan kecepatan waktu dan ketepatan pengambilan keputusan adalah penentuan lokasi pemasangan dan ukuran kapasitor yang harus dipasang pada sistem sebagai salah satu komponen yang digunakan untuk menjaga kestabilan dan kontinuitas sistem. Oleh karena itu diperlukan metode yang cepat guna mengatasi permasahan tersebut. Salah satu metode yang bisa diterapkan (sekaligus bisa memberikan kecepatan dan ketepatan) dalam mengatasi permasalahan tersebut adalah metode Algoritma Genetik (AG).

2. Rumusan Masalah

- a. Bagaimana penentuan ukuran dan lokasi pemasangan kapasitor dengan menggunakan metode Algoritma Genetik?
- b. Bagaimana profil tegangan pada sistem tenaga setelah terpasang kapasitor yang penentuan ukuran dan lokasi pemasangannya menggunakan metode Algoritma Genetik?

Seminar Nasional Hasil-hasil Penelitian Teknologi, MIPAdan Pendidikan Vokasi

¹⁸⁵.**≫**:

3. Tujuan

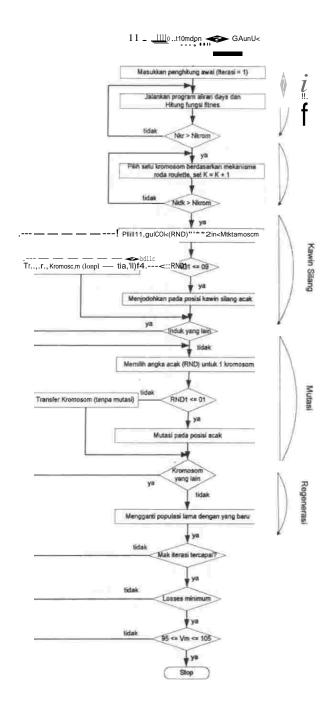
Tujuan dari penelitian ini adalah:

- Menentukan ukuran dan lokasi pemasangan kapasitor dengan menggunakan metode Algoritma Genetik.
- b. Mengetahui profit tegangan pada sistem tenaga setelah terpasang kapasitor yang penentuan ukuran dan lokasi pemasangannya menggunakan metode Algoritma Genetik.

4. Manfaat

- a. Bagi dosen, memberikan informasi tambahan tentang pemanfaatan metode Algoritma Genetik dalam bidang sistem tenaga listrik khususnya yang berkaitan dengan persoalan optimasi.
- b. Bagi mahasiswa, memberikan gambaran tentang implementasi teknologi *soft* computing dalam bidang tenaga listrik sebagai acuan dalam penyusunan tugas akhir.
- c. Membantu para pelaku di bidang ketenagalistrikan dalam menyelesaikan persoalan perbaikan drop tegangan, pengurangan rugi-rugi daya, dan meminimalisir penggunaan kapasitor (efisiensi).

B. METODE PENELITIAN.

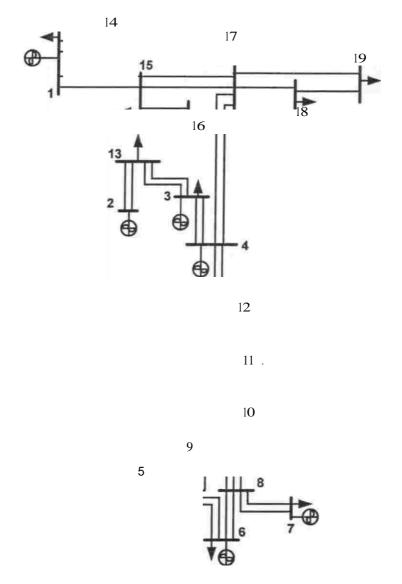

Penelitian ini dilakukan Laboratorium Mesin dan Simulasi Sistem Tenaga Listrik Jurusan Pendidikan Teknik Elektro FT UNY. Penelitian ini termasuk dalam jenis penelitian Research & Development untuk menghasilkan *listing programming* yang mengimplementasikan metode Algoritma Genetik dalam penentuan ukuran dan pemasangan kapasitor pada sistem tenaga dengan menggunakan bantuan perangkat lunak Matlab versi 6.5.

Tahapan-tahap yang akan dilakukan dalam penelitian ini adalah:

- 1. Studi literatur tentang materi yang mendukung tema penelitian
- 2. Membuat diagram alir (*flowchart*) untuk menentukan ukuran dan lokasi pemasangan kapasitor dengan algoritma genetik.

- 3. Menyusun listing programming untuk menyelesaikan persoalan penentuan ukuran dan lokasi pemasangan kapasitor dengan algoritma genetik.
- 4. Menguji program yang telah dibuat.
- Mengevaluasi profil tegangan sistem 19 bus setelah terpasang kapasitor yang ukuran dan lokasi pemasangannya ditentukan dengan menggunakan metode Algoritma Genetik.
- 6. Membandingkan profil tegangan sistem yang telah terpasang kapasitor yang penentuan lokasi dan ukurannya menggunankan metode algoritma genetik dengan profil tegangan sistem yang pemasangan dan penentuannya menggunakan metode konvensional (trial and error).

Seminar Nasional Hasil-hasil Penelitian Teknologi, MIPAdan Pendidikan Vokasi



Gambar I. Algoritma Program Penentuan Ukuran Dan Lokasi Pemasangan Kapasitor Dengan Metode Algoritma Genetik

Seminar Nasional Hasil-hasil Penelitian Teknologi, MIPA dan Pendidikan Vokasi

C. HASIL DAN PEMBAHASAN

Obyek sistem tenaga yang akan digunakan sebagai ujicoba implementasi program ditunjukkan pada gambar 2 dengan data-data sebagaimana ditunjukkan pada tabel I dan tabel 2.

Gambar 2. Topologi Sistem Tenaga Listrik 19 bus

Seminar Nasional Hasil-hasil Penelitian Teknologi, MIPA dan Pendidikan Vokasi

189 ___.**r** Sistem tenaga pada gambar 2 menggunakan Base MVA:2800 MYA; Base Tegangan: 500 kV. Penggolongan bus dari topologi tersebut adalah: Swing bus : Bus I; Bus Generator: Bus 2, 3, 4, 5, 6,7; dan Bus Beban: Bus 8,9,10,11,12,13,14,15,16,17,I 8,19. Data sistem di atas ditunjukkan pada tabel I dan tabel 2.

Tabel I. Data Pembangkit dan Pembebanan

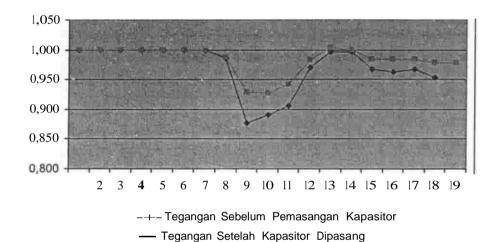
Bus No	Jenis	Pemb	Pembangkit		Konsumsi	
		P(MW)	Q (MVAr)	P(MW)	Q (MVAr)	
I.	Slack	0	0	13 2	44	
2.	Generator	300	0	0	0	
3.	Generator	600	0	527	195	
4.	Generator	432	0	0	0	
5.	Generator	2800	0	609	235	
6.	Generator	300	0	104	15	
7.	Generator	800	0	187	27	
8.	Beban	0	0	787	581	
9.	Beban	0	0	424	219	
1 O .	Beban	0	0	213	284	
11.	Beban	0	0	406	188	
12.	Beban	0	0	718	496	
13.	Beban	0	0	513	243	
14.	Beban	0	0	551	214	
15.	Beban	0	0	497	137	
16.	Beban	0	0	569	194	
17.	Beban	0	0	419	654	
18.	Beban	0	0	427	289	
19.	Beban	0	0	477	82	

Tabet 2. Data Saluran Transmisi

No	Bus Ke Bus	Panjang <km)< th=""><th>R (Ohm/km)/ fasa</th><th>X (Ohm/ km)/ fasa</th></km)<>	R (Ohm/km)/ fasa	X (Ohm/ km)/ fasa
1.	1-14	12,48	0,0251	0,2808
2.	1-15	111	0,0293	0,2815
3.	2-13	55	0,0293	0,2788
4.	3-13	44,56	0,0293	0,2815
5.	3-4	25,1	0,0293	0,2815
6.	4-12	37,43	0.0251	0,2808
7.	4-17	80,3	0,0293	0,2815
8.	5-9	410	0,0293	0,2788
9.	5-6	74	0,0251	0,2808
10.	6-8	74	0,0251	0,2808

Seminar Nasional Hasil-hasil Penelitian Teknologi, MIPA dan Pendidikan Vokasi

11.	7-8	22,2	0,0293	0,2788
12.	8 -10	251	0,0293	0,2815
13.	9-10	75	0,0293	0,2788
14.	I 0-11	228,7	0,0293	0,2815
15.	10-12	342,8	0,0293	0,2815
16.	11-12	130	0,0293	0,2815
17.	14-17	116	0,0293	0,2815
18.	15-16	31,9	0,0251	0,2808
19.	15-17	21,3	0,0293	0,2815
20.	17-18	37,92	0,0293	0,2815
21.	17-19	57	0,0293	0,2815
22.	18-19	18	0,0293	0,2815


Langkah pertama setelah memperoleh data-data (tabel I dan tabel 2) adalah melakukan load flow pada topologi sistem tenaga seperti yang ditunjukkan pada gambar 2. Profil tegangan hasil load flow dari topologi tersebut ditunjukkan pada tabel 3. Selanjutnya, dengan menggunakan Matlab versi 6.5 penempatan kapasitor bank dengan menggunakan algoritma genetik menghasilkan profil tegangan seperti ditunjukkan pada tabel 3.

Tabel 3. Profil Tegangan Berdasarkan Hasil Load Flow

	Sebelum d	i pasang	Setelab dipasang		
Bus	Kanasitor Bank		Kapasitor Bank		
	Tezanzan	Sudut	Teeanean	Sudut	
	1,000	0	1,000	0,000	
2	1,000	-3,105	1,000	-2,948	
3	1,000	-3,329	1,000	-3,171	
4	1,000	-3,214	1,000	-3,056	
5	1,000	36,99	1,000	35,396	
6	1,000	33,364	1,000	31,803	
7	1,000	29,661	1,000	28,144	
8	0,985	29,306	0,988	27,775	
9	0,876	17,345	0,929	16,134	
10	0,890	15,849	0,927	14,783	
11	0,906	1,193	0,942	1,084	
12	0,971	-2,679	0,983	-2,571	
13	0,996	-3,615	1,004	-3,483	
14	0,996	-0,433	1,000	-0,446	
15	0,967	-4,492	0,984	-4,465	
16	0,963	-5,099	0,984	-5,075	

17	0,967	-4,625	0,984	-4,584
18	0,954	-5,949	0,978	-5,901
19	0.955	-6.089	0.977	-6.016

Secara umum penempatan kapasitor bank dengan menggunakan algoritma genetik menghasilkan profil tegangan yang lebih baik dibandingkan sebelum diinjeksi MVAR oleh kapasitor bank. Selain itu, penempatan kapasitor bank dengan menggunakan algoritma genetik juga dapat mengurangi rugi daya reaktif. Secara grafts profil tegangan bus sebelum dan sesudah diinjeksi kapasitor bank dengan menggunakan algoritma genetik ditunjukkan pada gambar 3.

Gambar 3. Profil Tegangan masing-rnasing Bus Sebelum dan Sesudah Diinjeksi Kapasitor Bank

D. KESIMPULAN

- Penentuan ukuran dan lokasi pemasangan kapasitor dengan menggunakan algoritma genetik (AG) didasarkan atas nilai profil tegangan dan rugi daya reaktif pada masing-rnasing bus.
- 2. Profil tegangan pada sistem tenaga listrik setelah dinjeksi kapasitor bank lebih baik dibandingkan sebelum dinjeksi kapasitor bank.

DAFTAR PUSTAKA

- Anonim. Genetic Server and Genetic Library, available on line at: www.neurodimension.com
- D.E. Golberg. (1989). *Genetic Algorithms in Search, Optimization, and Machine Learning*. USA: Addison-Wesley Publishing Company.
- Davis, Lawrence. (1991). *Hand Booko/GeneticA/gorithm*. New York: Van Nostrand Reinhold.

http://www.generation5.org

Mitsuo Gen, Runwei Cheng. (1997). *Genetic Algorithms And Engineering Design*. John Wiley & Sons.

Robandi, Imam. (2006). Desain Sistem Tenaga Modern. Yogyakarta: Penerbit Andi

Saadat, Hadi. {1999). Power System Analysis. Singapore: McGraw-Hill Co.

DAFTAR MAKALAH SEMINAR NASIONAL HASIL-HASIL PENELITIAN TEKNOLOGI, MIPA DAN PENDIDIKAN VOKASI

·, ·, .	J\"		rune e dei y 110 m
∪ ,,	', ,\	!ıaı ı i ≬' -	,1·i ' ₁ , _ , I
1	Umi Rochayati	FT UNY	Disain dan Implementasi Modul Digital sebagai Modul Pembelajaran Praktek Elektronika Digital
2	Masduki Zakaria, MT	FT UNY	Algoritma Sistem Cerdas untuk Inovasi Traffic Light Control System
3	Sri Waluyanti	FT UNY	Kooperatif Jigsaw dan Peer Teaching sebagai Model Pembelajaran Mahasiswa Calon Guru
4	Anna Rakhmawati	FMIPA UNY	Uji Aktivitas Selulotik Aspergillus spp yang Diisolasi dari Serat Kelapa Sawit
۱.	Nurhening Yuniarti	FT UNY	Metode Algoritma Genetik untuk Menentukan Bank Kapasitor pada Sistem Tenaga Listrik
6	Pradoto, MT	FT UNY	Implementasi Teori Belajar Sibemetik untuk Meningkatkan Pembelajaran Matematika Teknik
7	Drs. Sunomo, MT	FT UNY	Kendali Fasa Thyristor dan TRIAC Tanpa Tegangan Ekstemal untuk Praktikum Elektronika Daya
8	Drs. Sunomo, MT	FT UNY	Sistem Pensinyalan Transportasi Kereta Api dengan Visualisasi Posisi Menggunakan Teknologi GPS
9	V. Lilik Hariyanto	FT UNY	Peningkatan Kompetensi Belajar Praktik Kerja Batu melalui Model Pembelajaran Portfolio Based Learning (PBL) yang Berbasis Konstruktivistik
10	Nuryadin Eko Raharjo, M.Pd	FT UNY	Aplikasi Software Course Lab.V.2.4. untuk Implementasi Model Pembelajaran Interactive Problem Solving pada Mata Kuliah Matematika
11	Mujiyono, MT	FT UNY	Rekayasa Material Biokomposit dari Sekresi Kutu Lak dan Serat Alami
12	Eli Rohaeti	FMTPA	Efek Minyak Nabati pada Biodegradasi Poliuretan Hasil Sintesis dari Polioksietilenglikol400 dan Metilen-4,4'- Difenildiisosianat
13	Arianto Leman S	FT UNY	Metode Pengerasan pada Proses Karburising Padat
14	P. Sarjiman	FIP	Pembelajaran Soal Matematika Bentuk Cerita dengan Pendekatan Pemecahan Masalah pada SiswaSD
15	Amat J aedun	FT UNY	Penerapan Model Pembelajaran Berbasis